2,539 research outputs found

    New Development in Greenhouse Technology can Mitigate the Water Shortage Problem of the 21st Century

    Get PDF
    The world's fresh accessible water situation is deteriorating at a dismal pace. Though the situation is already quite dramatic in Africa, the near future will bring us great problems in Asia as well, considering the pace at which the population is growing and the rise in water use per capita as the economy induces a raised demand. Agricultural consumption of fresh water is one of the main water uses world wide; however, it appears that protected cultivation of horticultural crops can alleviate the problem. Drip irrigation already reduces water use dramatically. However, novel high technological solutions in greenhouse production can lead the way to highly efficient water use production techniques. Adoption of more efficient water use techniques will contribute to sustainability, especially in highly populated urban areas. The novel Dutch technology of closed greenhouses could help develop water efficient production system

    The Mackinson-Daskalov North Sea EcoSpace model as a simulation tool for spatial planning scenarios

    Get PDF
    The Netherlands Environmental Assessment Agency (PBL) developed several biodiversity models for the terrestrial environment to support policy making and evaluation. For the marine environment currently such modelling instruments are lacking. In 2009 an overview of modelling instruments was developed for marine biodiversity of its components. The objective of the current report is one of these modelling instruments, i.e. the Mackinson-Daskalov North Sea EcoSpace model. This model has been analysed in detail to assess its potential applicability for questions relevant for PBL. These questions are: (i) Can the model be used to assess the impact of primary production scenarios, (ii) can the model be used to develop output at a higher spatial resolution and (iii) can it generate output for biodiversity criteria

    TOPsport op Gladde Bruggen

    Get PDF
    Niet UB, maar tijdelijk ter bevordering van de PDF bestanden in het Leids Repositorium

    Linking Forests and Economic Well-being: A Four Quadrant Approach

    Get PDF
    This paper has three main objectives: (1) to investigate whether the four-quadrant approach introduced by Maini (2003) reveals a useful typology for grouping countries by GDP and forest cover per capita, (2) to determine if the framework can enhance our understanding of the relationship between forest cover and GDP per capita, and (3) to investigate why countries in the four-quadrant world occupy different quadrants, and to determine the principal factors affecting country-movement across and within the individual quadrants. The examination reveals that countries can be classified into four broad categories, and that GDP and forest cover per capita have a low but consistent level of negative association. After regressing economic, institutional, social capital and other variables on a country’s occupancy and movement in the four-quadrant world, the results suggest that countries in each quadrant share different characteristics and that factors underlying country-movement varies according to the quadrant being observed. Overall, countries with less corruption and higher education are likely to experience increases in both forest cover and GDP per capita, while countries exporting a significant proportion of forest products have a reduced probability of increasing both variables.Economic well-being, forest cover, institutions, corruption, education

    A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes

    Get PDF
    AbstractA newly-described first-line immune defence mechanism of neutrophils is the release of neutrophil extracellular traps (NETs). Immune complexes (ICxs) induce low level NET release. As such, the in vitro quantification of NETs is challenging with current methodologies. In order to investigate the role of NET release in ICx-mediated autoimmune diseases, we developed a highly sensitive and automated method for quantification of NETs. After labelling human neutrophils with PKH26 and extracellular DNA with Sytox green, cells are fixed and automatically imaged with 3-dimensional confocal laser scanning microscopy (3D-CLSM). NET release is then quantified with digital image analysis whereby the NET amount (Sytox green area) is corrected for the number of imaged neutrophils (PKH26 area). A high sensitivity of the assay is achieved by a) significantly augmenting the area of the well imaged (11%) as compared to conventional assays (0.5%) and b) using a 3D imaging technique for optimal capture of NETs, which are topologically superimposed on neutrophils. In this assay, we confirmed low levels of NET release upon human ICx stimulation which were positive for citrullinated histones and neutrophil elastase. In contrast to PMA-induced NET release, ICx-induced NET release was unchanged when co-incubated with diphenyleneiodonium (DPI). We were able to quantify NET release upon stimulation with serum from RA and SLE patients, which was not observed with normal human serum. To our knowledge, this is the first semi-automated assay capable of sensitive detection and quantification of NET release at a low threshold by using 3D CLSM. The assay is applicable in a high-throughput manner and allows the in vitro analysis of NET release in ICx-mediated autoimmune diseases

    Micrococcal Nuclease stimulates Staphylococcus aureus Biofilm Formation in a Murine Implant Infection Model

    Get PDF
    Advancements in contemporary medicine have led to an increasing life expectancy which has broadened the application of biomaterial implants. As each implant procedure has an innate risk of infection, the number of biomaterial-associated infections keeps rising. Staphylococcus aureus causes 34% of such infections and is known as a potent biofilm producer. By secreting micrococcal nuclease S. aureus is able to escape neutrophil extracellular traps by cleaving their DNA-backbone. Also, micrococcal nuclease potentially limits biofilm growth and adhesion by cleaving extracellular DNA, an important constituent of biofilms. This study aimed to evaluate the impact of micrococcal nuclease on infection persistence and biofilm formation in a murine biomaterial-associated infection-model with polyvinylidene-fluoride mesh implants inoculated with bioluminescent S. aureus or its isogenic micrococcal nuclease deficient mutant. Supported by results based on in-vivo bioluminescence imaging, ex-vivo colony forming unit counts, and histological analysis it was found that production of micrococcal nuclease enables S. aureus bacteria to evade the immune response around an implant resulting in a persistent infection. As a novel finding, histological analysis provided clear indications that the production of micrococcal nuclease stimulates S. aureus to form biofilms, the presence of which extended neutrophil extracellular trap formation up to 13 days after mesh implantation. Since micrococcal nuclease production appeared vital for the persistence of S. aureus biomaterial-associated infection, targeting its production could be a novel strategy in preventing biomaterial-associated infection

    Influence of glutaraldehyde fixation of cells adherent to solid substrata on their detachment during exposure to shear stress

    Get PDF
    In order to determine the response of fixed and nonfixed cells adherent to a solid substratum to shear stress, human fibroblasts were allowed to adhere and spread on either hydrophilic glass or hydrophobic Fluoroethylene-propylene (FEP-Teflon) and fixed with glutaraldehyde. Then, the cells were exposed to an incrementally loaded shear stress in a parallel plate flow chamber up to shear stresses of about 500 dynes/cm2, followed by exposure to a liquid-air interface passage. The cellular detachment was compared with the one of nonfixed cells. In case of fixed cells, 50% of the adhering cells detached from FEP-Teflon at a shear stress of 350 dynes/cm2, whereas 50% of the adhering, nonfixed cells detached already at a shear stress of 20 dynes/cm2. No fixed cells detached from glass for shear stresses up to at least 500 dynes/cm2. More than 50% of the nonfixed cells were detached from glass at a shear stress of 350 dynes/cm2. Furthermore, the shape and morphology of fixed cells did not change during the incrementally loaded flow, in contrast to the ones of nonfixed cells, which clearly rounded up prior to detachment.</p

    Platelet activation and lipid peroxidation in patients with acute ischemic stroke

    Get PDF
    BACKGROUND AND PURPOSE: Both platelet activation and lipid peroxidation are potential sources of vasoactive eicosanoids that can be produced via the cyclooxygenase pathway, ie, thromboxane (TX) A2, or by free radical-catalyzed peroxidation of arachidonic acid, ie, isoprostanes. We investigated the biosynthesis of TXA2 and F2-isoprostanes, as reflected by the urinary excretion of 11-dehydro-TXB2 and 8-epi-prostaglandin (PG) F2 alpha respectively, in 62 consecutive patients (30 men, 32 women; mean age, 67 +/- 14 years) with acute ischemic stroke. METHODS: At least two consecutive 6-hour urine samples were obtained during the first 72 hours after onset of symptoms. Urinary eicosanoids were measured by previously described radioimmunoassays. RESULTS: Repeated periods of enhanced thromboxane biosynthesis were found in 52% of patients. Urinary 11-dehydro-TXB2 averaged 221 +/- 207 (mean +/- SD; n = 197; range, 13 to 967) pmol/mmol creatinine in 30 patients treated with cyclooxygenase inhibitors (mostly aspirin) at the time of study versus 392 +/- 392 (n = 186; range, 26 to 2533) in 32 untreated patients (P .05). The correlation between the two metabolites was moderate in both untreated patients (r = .41, P < .001) and patients with cyclooxygenase inhibitors (r = .31, P < .001). In a multiple regression analysis, increased thromboxane production was independently associated with severity of stroke on admission, atrial fibrillation, and treatment with cyclooxygenase-inhibiting drugs. CONCLUSIONS: We conclude that during the first few days after an acute ischemic stroke (1) platelet activation occurs repeatedly in a cyclooxygenase-dependent fashion; (2) platelet activation is not associated with concurrent changes in isoprostane biosynthesis; (3) platelet activation is independently associated with stroke severity and atrial fibrillation; and (4) isoprostane biosynthesis is largely independent of platelet cyclooxygenase activity

    Phagocytosis of Bacteria Adhering to a Biomaterial Surface in a Surface Thermodynamic Perspective

    Get PDF
    Bacterial biofilms can increase the pathogenicity of infection and constitute a major problem in modern health-care, especially on biomaterial implants and devices. Biofilms are difficult to eradicate by the host immune system, even with antibiotics, and have been the number one cause of biomaterial implant and device failure for decades. Therefore, it is important to understand how immune cells interact with adhering pathogens. This study firstly aims to develop a simple method to quantify phagocytosis of six different strains of staphylococci adhering on a surface with phase-contrast-microscopy. Phagocytosis of adhering staphylococci to a glass surface by phagocytes was quantified in a parallel plate flow chamber, and expressed as a phagocytosis rate, accounting for the number of adhering staphylococci initially present and for the duration of phagocytosis. Murine macrophages were more effective in clearing staphylococci from a surface than human phagocytes, which require differentiation from their monocyte or promyelocytic state during an experiment. Direct visualization of internalization of a GFP-modified S. aureus strain inside phagocytes confirmed the validity of the method proposed. As a second aim, the differences in phagocytosis rates observed were investigated on a surface thermodynamic basis using measured contact angles of liquids on macroscopic lawns of staphylococci and phagocytes, confirming that phagocytosis of adhering pathogens can be regarded as a surface phenomenon. In addition, surface thermodynamics revealed that phagocytosis of adhering pathogens is determined by an interplay of physical attraction between pathogens and phagocytes and the influence of chemo-attractants. For future studies, these results will help to place in vitro experiments and murine infection models in better perspective with respect to human ones
    • …
    corecore